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The heat transfer due to forced convection from an isothermal sphere in a steady 
stream of viscous incompressible fluid is calculated for low values of the Reynolds 
number and Prandtl numbers of O(1). The mean Nusselt number is compared 
with the results of experimental measurements. At very low Reynolds numbers, 
both the local and mean Nusselt numbers are compared with the results obtained 
from the theory of matched asymptotic expansions. 

1. Introduction 
In this paper the problem of heat transfer from an isothermal sphere in a steady 

flow at small Reynolds number is considered. The physical properties of the fluid 
are assumed to be independent of temperature and, in particular, the fluid is 
assumed to be incompressible. The problem of heat transfer is in general a com- 
plex one involving four independent parameters see (Schlichting 1960, p. 297). 
When free convection is taking place the fluid motion is altered by the effect of 
gravitational forces on heated fluid particles of variable density; in addition, heat 
is generated internally in the fluid by viscous dissipation. In  the present paper 
these latter processes are assumed negligible and the problem of forced convec- 
tion only is considered. This imposes the restrictions on the problem that the 
normalized temperature difference IT,-- TwI/Tw, where T, is the constant tem- 
perature of the sphere and T, is the temperature of the fluid at large distances 
from the sphere, must be small in comparison with unity and further that it must 
be large compared with the square of the Mach number of the basic flow. 

The basic theory of this problem has been described by Illingworth (1963), but 
very little theoretical work exists. Part of the difficulty is that theoretical solu- 
tions for the velocity of the fluid must be available in order to consider the 
forced-convection problem. Acrivos & Taylor (1962) assumed that the velocity 
field was given by the Stokes solution for slow flow past a sphere and used the 
method of matched inner and outer expansions to obtain an expression for the 
mean Nusselt number N, as a function of the PBclet number Pe = aR. Here CT is 
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the Prandtl number and R the Reynolds number. This work was extended by 
Rimmer (1968), with subsequent minor corrections (Rimmer 1969), by using the 
expression for the velocity field given by Proudman & Pearson (1957). This is 
valid for larger values of R than the Stokes expression for the velocity and thus 
the expression for N, given by Rimmer (1968) is valid for larger R than that of 
Acrivos & Taylor (1962). Both expressions agree up to terms in a2R2, but there- 
after the expansion of Rimmer (1968) ceases to depend on aR alone and is a 
function of a and R separately. The theory could be further extended by using 
the velocity distributions given by Chester & Breach (1969). One other study of 
interest in this context is that of Kassoy, Adamson & Messiter (1966), who con- 
sidered the modifications in this type of approach for compressible low Reynolds 
number flow in which significant variations in density occur. 

The range of validity of these theoretical expansions is not known, except that 
R must be small and v a t  most of O( 1). It therefore seems worthwhile to calculate 
the heat transfer numerically for a range of small values of the Reynolds number 
and various values of the Prandtl number. The calculations are described in the 
present paper. They have been carried out by two methods, in both cases using 
velocity distributions calculated from the exact Navier-Stokes equations. The 
first method employs velocity fields calculated by Dennis & Walker (1971) for 
the range R = 0- 1-40, where R is the Reynolds number based on the diameter of 
the sphere, using the semi-analytical method of series truncation. Here the stream 
function and vorticity were expressed in terms of series of Legendre functions 
with argument z = cos 8, where ( r ,  8) are polar co-ordinates in a plane through 
the axis of symmetry of the motion. The coefficients of the Legendre functions in 
the series are functions of the variable 6 = log ( r /a) ,  where a is the radius of the 
sphere, and these were found as numerical solutions of sets of ordinary differential 
equations which express the fact that the Navier-Stokes equations for steady 
incompressible viscous flow past the sphere shall be satisfied. A similar method 
of series truncation is employed in the present paper to solve the forced- 
convection problem. Here the fluid temperature is expressed as a series of 
Legendre polynomials with argument z = cos8 and coefficients which are 
functions of 5. 

The basis of the series truncation method is to approximate the solution, 
which in theory consists of an infinite series, by a finite number of terms. In  the 
present case, if R is small and cr of O( 1 )  only relatively few terms are required to 
give an adequate approximation to the temperature field. In  these circumstances 
this method is felt t o  be superior to a conventional finite-difference approach (see 
Dennis & Walker 1971, p. 787).  If either R or a is increased, the complexity of 
the temperature field is increased, more terms of the series are required and the 
effectiveness of the method diminishes. Generally the number of terms required 
to  represent adequately a particular solution is not known and must be obtained 
by experience. It is therefore desirable to check the results in at least one case by 
an independent method. For a = 0.73 (air), independent results are obtained by 
solving the energy equation for the temperature using two-dimensional finite- 
difference methods. An independent velocity field is used for this calculation. 
This is obtained by solving the Navier-Stokes equations numerically over the 
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range R = 0.5-20 using two-dimensional finite-difference methods. The agree- 
ment between the two sets of results is extremely good. Results are obtained 
using the series truncation method for the range R = 0.1-10 for the values 
a = 0.73 and 1 and for R = 0.1-1 for a = 8. 

The local and mean Nusselt numbers are calculated from the temperature 
distributions. For very low Reynolds numbers and for Prandtl numbers of order 
unity these quantities are in very good agreement with the theory of Rimmer 
(1968). The mean Nusselt number is compared with various formulae based on 
experimental results. The agreement for very low Reynolds numbers is only fair, 
but it improves substantially as the Reynolds number is increased. The experi- 
mental correlation which fits the present results best is that given by Whitaker 
(1972). 

2. Basic equations 
A spherical polar co-ordinate system (r ,  8, q5) with origin at  the centre of the 

sphere is chosen with 6' = 0 as the downstream radius. Both the fluid motion and 
temperature field are axially symmetric and hence independent of the azimuthal 
co-ordinate $, The fluid motion is described by radial and transverse components 
of velocity (u, v )  in a plane through the axis of symmetry. These are obtained by 
dividing the corresponding dimensional components by the main-stream velo- 
city Urn. The velocity components are expressed in terms of a dimensionless 
stream function $(& 6') by the equations 

(1) 
e-2E a$ 
sin 6 a$ ' 

v = e-26 a$ 
sin 0 a0 ' 

u=-- 

In  a recent paper, Dennis & Walker (1971) have shown that if we write 

where the P,(z) are the ordinary Legendre polynomials, numerical solutions for 
the functions f,(E) may be obtained by solving sets of ordinary differential 
equations. 

If the physical properties of the fluid are assumed constant and the internal 
generation of heat by friction is neglected, the energy equation is then 

aZT aT aT a2T 
Ra ( i: N') 

-+-+cotO---+- = -e$ u-+v- . aE2 86 ae 802 2 (3) 

Here T(E, 0) is the normalized temperature difference, obtained by subtracting 
the main-flow temperature T, from the temperature and dividing by T, - T,. 
The boundary conditions are then 

Here R = 2U,a/v is the Reynolds number based on the diameter (twice that 
used by Rimmer). 

I 

T(0,6)  = 1, T+-q  as E+m. (4 a, b )  

The present approach is to write T(5,8) as 
m 

18-2 



276 S. C .  R. Dennis, J .  D. A .  Walker and J .  D. Hudson 

which satisfies the requirement that aTla8 = 0 on 8 = 0, rr. Then in accordance 
with (4) the tn satisfy 

tn(O) = anO, tn(C)+O as C+m, (6  a, b )  

where ani is the Kronecker delta. Substitution of t'he series (5) into the basic 
equation (3) leads to the infinite set of equations 

where the prime denotes differentiation with respect to 6 and 
tg + (1 -An)th - (n(n + 1) +Bn}tn = S,, (7) 

m 

m m  

k4n 

Here the constantst ayk and Pj"k are derived from the integrals of three associated 
Legendre functions and may be shown to be given by 

js) are the 3-j symbols. A table of these quantities and the 

algorithm to compute them numerically has been given by Rotenberg et al. ( 1  959, 

Equations (7) are a set of linear simultaneous equations which are homogeneous 
in the functions tn(6) with coeacients which can be calculated numerically from 
the functions fn(t). The theoretical problem is to solve these equations for a given 
R and (r subject to the boundary conditions (6). In practice, condition (6  b )  could 
be enforced at some finite but large value of 5 as an approximation. Similarly 
condition (4 b)  could be imposed at  a large enough value of to give an approxi- 
mate boundary condition when (3) i s  solved numerically using two-dimensional 
finite differences. An improved condition in both cases may however be deduced 
from Oseen theory. 

where ti, k2 m, 

p. 37).  

3. Solution for large values of 5 
The Oseen-type solution of (3) is the leading term in a solution which is valid 

as t+ a. This is obtained by putting u = cos 8 and o = - sin8 in (3). A solution 
of the resulting equation which has aTla8 = 0 on 8 = 0 and 8 = rr is 

t These constants differ from those given by Dennis & Walker (1971) for the steady 
flow problem. 
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where x = $RCT et,  K,+& is the modified Bessel function of the second kind and 
the A,  are constants. Illingworth (1963) has described the classical theory, in 
which, if RCT is small, a valid first approximation to the whole temperature field 
may be obtained by determining the constants A, such that (4a)  is satisfied. If 
Ra is not small, the expression (12) is valid only as [+co and the constants A ,  
would be determined by matching ( 1 2 )  with somevalid inner solution. The present 
object is to match with an inner numerical solution and this is done by using (12) 
as a boundary condition for large c. 

As g-. 00, the Bessel functions in ( 1 2 )  may be replaced by the leading term in 
their asymptotic expansion for large [, so that 

Thus the temperature is exponentially small everywhere except in a wake region 
for which x( 1 - cos 8 )  = O( I), i.e. for which 8 = O(2-4) as x+co. Within this 
region we can introduce a new angular co-ordinate w defined by 

w = (ix)*e (14) 

which has the effect of scaling 8 with respect to the angular breadth of the wake. 
As x-+00, the physical range of the co-ordinate 8, from 8 = 0 to 8 = T ,  corre- 
sponds to the range (0, co) for w. It is now possible to use the properties of the 
wake to deduce a condition on t,(c) as [+co. 

It may be seen from (5) that 

For large [, the expression (13) for T(& 0) may be substituted in (15). Within the 
temperature wake, at  large distances from the sphere, 8 will be small and we may 
write 1 - cos8 N +Oz, sin8 - 0 and P, (cos8) N 1.1 The change of variable (14) 
now leads to 

t , ( [ )  - 2D,e-25 we-oadw = D,e-2[$ as [-+co. 
J O m  

Values of the constants D, are not known, but we can use (16) to match an inner 
numerical solution at [ = 1, where Z is sufficiently large, to the Oseen solution by 
requiring that 

where h is the grid size used in a numerical solution. 

t A referee has suggested that, in view of the possible slow convergence of Z,A,P,(cosO) 
associated with its rapid variation with respect to 0 in the wake, the leading error term 
in (13) may be divergent for some values of 8, corresponding to a non-uniformity in the 
expansion. Because the A,  are not known this remains unresolved here, but it is neverthe- 
less assumed that the leading term in the expansion for T is correctly given by (13) for 

t,(Z) = e-2h t,(l- h),  (17) 

all 8. 
$ For 8 small and 
$ This result can also be obtained without introducing w by writing the exponential 

in (1  2) as a series of modified Bessel functions I,,++(x) and P,(cosO) and subsequently taking 
the leading term in (15) for large E .  

large (of O(i/O)), the leading term in P,(cosO) is of O(1). 
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Equation (17) gives a boundary condition to be applied at  [ = 1 when solving 
the set of equations ( 7 ) .  A condition to be applied at a large enough value 6 = 1 
when (3) is solved using two-dimensional finite differences is obtained by elirnina- 
tion of the unknown function f(8) from (13) using the values of T(<, 8) on the 
grid lines [ = 1 - h and < = 1. This gives 

T(Z,8) = T(I-h,8)exp{(~,-X~-~~) ( ~ 0 ~ 8 -  I)--h}, (18) 

where xl denotes the value of x a t  5 = 1. This condition is similar to that given by 
Dennis, Hudson & Smith (1968) in the case of heat transfer from a circular 
cylinder. 

4. Calculation procedure 
In solving the set of equations (7), a truncation of order no was defined by 

setting all t,([) for n > no equal to zero. The finite set of no equations was then 
solved numerically. There is no basic way of choosing no to give a good approxi- 
mation to the temperature field for a given R and (r and this problem can only be 
overcome by increasing no until no appreciable change in the solution occurs. A 
finite-difference method of solution was adopted in which all derivatives were 
approximated by three-point central differences. Thus a tridiagonal matrix 
problem was obtained for each t,([) and was solved by the direct method de- 
scribed by Rosser (1967). The functions t,(<) satisfied condition (Ga) on the 
sphere and condition (17) on the outer boundary = 1. The functions f,(l) 
were obtained from the solutions of Dennis & Walker (1971). 

The truncated set of equations ( 7 )  was solved by a general iterative procedure. 
A sequence of iterates 

{@([)} (n = 0, 1 ,2 ,  ..., no; j = 1, 2, 3, ...) 

was obtained in the following manner. Suppose that the iterate with superscript 
(j) has been completed. Equations (7) were then solved sequentially from n = 0 
to no, always using the most recently available information to calculate the 
functions AS',(<) defined by (10). As each function was obtained, denoted by tn([) ,  
the components of the iterate with superscript (j+ 1)  were defined by 

@+1)(6) = dn(Lg)+(1--E)t!!)(Lg), 

where e is an empirical parameter. In  general as R increases the parameter e must 
be reduced or divergence of the scheme will result. For R 6 1, E = 0.05 was used 
but this had to be reduced to 0.01 a t  the highest value of R considered ( R  = 10). 
The values however are not necessarily the largest ones compatible with 
convergence. 

The iterative scheme was continued until ultimately convergence was attained, 
which was decided by the test 

- tE)( [ ) l  < 10-4 for all [ and for all n < no. 

The number no of terms retained in the series varied from a minimum of no = 7 
a t  the lowest Reynolds numbers to a maximum of no = 17 at the highest (R = 10). 
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The flow field solutions of Dennis & Walker (1971) were obtained using a grid 
size of h = 0.0245 and with the outer boundary a t  1 = 4.9 (corresponding to a 
dimensionless radial distance of r/a = 134.2 from the centre of the sphere) for 
R 6 10. These same values of the parameters were used in the present solutions 
for CT = 0.73 and (T = 1. For the case (T = 8, the parameters 1 and h were halved 
and the velocity field at the intermediate grid points obtained by a five- 
point Lagrangian interpolation formula. The logic behind this step is based on 
the notion of a thermal boundary layer having thickness of order (T-4. 

It becomes increasingly difficult to obtain reliable solutions as R and CT increase, 
and, further, the Reynolds-number range for reliable solutions decreases as g 
increases. To obtain at  least some check on the solutions obtained by the series 
truncation method, a set of solutions for R = 0.5-20 was obtained in the case 
CT = 0.73 by an independent method and using an independent velocity field. The 
velocity field mas obtained by solving the Navier-Stokes equations, expressed in 
terms of the usual two simultaneous equations for the stream function and 
vorticity, by two-dimensional finite differences. The details will not be described 
here except to say that basically the same formulation, using central differences, 
as that given by Jenson (1959) was adopted with, however, an improvement in 
the treatment of the boundary conditions far from the sphere. An equation 
similar to  (I$), derived from Oseen theory, was used as a boundary condition for 
the vorticity on the far boundary 6 = 1. An equation for the stream function, 
again obtained by consideration of the nature of the flow in the wake, was used 
as a boundary condition for $ on 6 = 1. 

The flow field was calculated using this method for R = 0.5, 1, 5, 10 and 20. 
In  each case a grid size h = 0.1 in the 6 direction with a grid size of &n in the 
0 direction was used. The value of I was taken as 3. The effect on the solutions of 
varying the parameter 1 was studied and it was found to be well within a 1% 
tolerance. The computed velocity fields were used in (3) for the same range of 
Reynolds numbers and with CT = 0-73. Numerical solutions of (3) were found 
using conditions (4 u),  condition (18) and the conditions of symmetry about 0 = 0 
and 8 = n as boundary conditions. The same grid sizes were used for the flow 
field calculations and the same value of 1 was used. All derivatives in (3) were 
approximated by central differences and the difference equations were solved 
by the method of successive over-relaxation. 

5.  Calculated results 
The local amount of heat transferred per unit area per unit time from the sphere 

to the fluid is 

where K is the thermal conductivity. The local Nusselt number is defined as 

m 

N ( 0 )  = (19) 
n=O 
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e 
FIGUR,E 1. Local Nusselt number. -, present results; --, Rimmer (1968, 1969). 

and the mean Nusselt number as 

sin8d6 = -2t'(O). 
g=0 

Two comparisons of the present results are of interest. First, there is the result 
given by Rimmer (1968) : 

N, N 2+$0-R+ ~ ~ 2 R ~ l o g ( ~ 0 - R ) + f f ( a ) a 2 R 2 ,  (21) 
where f(a) = f [ ( 2 r 2  - CT + 47 - 1A3-) + 2(a3 - 30- - 2 )  log a 

- 2( 0- + 1 ) 2  (0- - 2 )  log (0- + 1 )] * 

This result is based on the method of matched inner and outer expansions. Here, 
f(a) is the corrected expression given by Rimmer (1969) and y is Euler's constant. 
It may be shown from Rimmer's results that the local Nusselt number N(6)  is 
given by 

N ( 8 )  - N,-;RCT I +- (1 -4g) P ~ ( c o s ~ ) + ~ ~ ~ ~ ( ~ - - ~ ~ } P , ( c o s ~ ) .  

(22) 
{ ;: ) 

In  figure 1, the present results obtained by the series truncation method for 
the local Nusselt number N ( 8 )  for a = 0-73 and R = 0.1, 0.2, 0.5 and I are com- 



Heat transfer from a sphere at low Reynolds numbers 281 

R 

0.1 
0.2 
0.5 
1 
5 

10 
20 

N(O) 
2.006 
2.011 
2.026 
2.034 
2.038 
2,045 
2.062 

”7-d 
2.068 
2.116 
2.272 
2.482 
3.656 
4.662 
6.136 

NnI 
2.037 
2.064 
2.151 
2.260 
2-857 
3.358 
4.065 

TABLE 1. Calculated heat-transfer coefficients for u = 0.73. 

R N(O) N(n)  Nln 
0.1 2.007 2.060 2.034 
0.2 2.015 2.1 16 2.066 
0.5 2-053 2.278 2.166 
1.0 2.213 2.564 2.393 

TABLE 2. Theoretioal heat-transfer coefficients due to Rimmer (1968, 1969). 

pared with Rimmer’s (1968, 1969) theory (equation ( 2 2 ) ) .  At R = 0.1 the results 
are almost identical. As R increases there is a progressive deviation from Rimmer’s 
theory, particularly near the back of the sphere. At R = 0.5, the agreement is 
still within about 1.5 yo over the entire equator of the sphere but at R = 1 the 
theory tends to become inadequate. Similar conclusions were obtainedfor w = 1, 
the discrepancy at  R = 0.5 in this case being about 3.4 %. For a given value of R 
the discrepancy tends to increase as g increases. 

The results obtained for the case c = 0-73 using the method of two-dimensional 
finite differences were found, where comparison is possible, to be in very good 
agreement with those calculated using the method of series truncation. On the 
whole the agreement of the calculated Nusselt numbers was found to be well 
within 1 yo for the two methods, which are completely independent. Some calcu- 
lated results for g = 0.73 are shown in table 1. These values were derived mainly 
from the results of the two-dimensional finite-difference method, with the excep- 
tion of the values at  R = 0.1 and 0.2, for which only the series truncation method 
was employed. Some theoretical values obtained from the expression of Rimmer 
(1968) are shown in table 2 for comparison. 

The second point of interest is a comparison of the present results with experi- 
ment. Kramers (1946) carried out experiments with various flowing media and 
found that the formula 

N, = 2 + 1*3~0’15 + 0-66g0’31R0’50 (23) 

described his results. Since this formula does not reduce to the Stokes result 
N, = 2 as R + 0, it is not valid for small R. Alater extensive experimental investi- 
gation by Ranz &, Marshall (1952) indicated a correlation 

N, = 2 + 0 * 6 0 R ) ~ * .  (24) 
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10 

1.0 

L? 

I 

2 

0.1 

R 

FIGURE 2. Comparison of mean Nusselt number with theory and experiment. (i) Present 
results: +, u = 0.73; x , u = 1; 0, CT = 8. (ii) Experimental correlations: (a )  equation 
(23), u = 0.73, ( b )  equation (24), u = 0.73, (c) equation (25),  u = 0.73, ( d )  equation (25), 
u = 1, ( e )  equation (25),  u = 8. (iii) Theory (Rimmor 1968, 1969): ( f )  u = 0.73, ( 9 )  CT = 1. 

I80 135 90 45 0" 

I9 

FIGURE 3. Local heat transfer for u = 0.73. 
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The most recent formula is that given by Whitaker (1972), which is 

N, = 2 + (0.4RB + 0-06RQ) r.Y"'4. 

Equation (25 )  is based on a correlation of the experimental data of Vliet & 
Leppert (1961) for water, Kramers (1946) for air, water and oil and Yuge (1960) 
for air as well as a theoretical argument due to Richardson (1968). The present 
results for the mean Nusselt number are plotted for Prandtl numbers of CT = 0.73, 
1 and 8 in figure 2. The results are compared here with the experimental formulae 
(23), (24) and (25 )  as well as the theory of Rimmer (1968, 1969). 

It is the conclusion of the present study that the theory of Rimmer (1968) 
represents N, best for N O(1) and R small. However, the theory becomes 
inadequate with increasing R and the formula (25) then represents AT,, best: 
Equation (25) appears to fit the present results better than either (23) or (24), a t  
least for the Prandtl numbers considered. Finally, the variation of N ( 0 )  is shown 
over the equator of the sphere for u = 0-73 and the range R = 1-20 in figure 3. 
The behaviour of N ( 8 )  with increasing R tends to be in agreement with the model 
proposed by Acrivos et al. (1965) for a circular cylinder in that the variation of 
R-BN(n) is tending to become slower as R increases, in accordance with boundary- 
layer theory, whereas there is only a slight upward tendency of N ( 0 ) .  According 
to the model this latter quantity should become roughly constant. 

Part of this work was sponsored by the National Research Council of Canada. 
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